

Background GABA_A receptor (GABA_A-R) mediated tonic currents are an important source of inhibition in the cortex. GABA_A-Rs that contain $\alpha 4$, $\alpha 5$, or $\alpha 6$ subunits contribute to formation of GABA_A-Rs that are located at extra-synaptic sites along the plasma membrane, and are activated by ambient GABA that results from "spillover" from the synaptic cleft and possibly other sources. Neocortical α_4 subunit-containing GABA_A-Rs are predominantly located in the superficial layers of somatosensory cortex in mice, but the extent to which this receptor is responsible for mediating the tonic current is unknown.

In this study, our objective was to define the contribution of the GABA_A α 4 subunit to bicuculline-sensitive tonic currents in layer II/III pyramidal cells in somatosensory cortex.

Methods Experiments were performed in accordance with institutional and federal guidelines. Whole-cell patch clamp recordings were obtained in voltage clamp mode at -70 mV from layer 2/3 pyramidal cells in acutely prepared brain slices from both wild-type ($\alpha 4^{+/+}$) and GABA_A-R $\alpha 4$ subunit deletion $(\alpha 4^{-/-})$ mice in the presence of glutamate and GABA_R receptor antagonists using a KCl-based internal solution. The tonic current was measured as a shift in the holding current after application of bicuculline (50μ M).

> Representative trace of firing pattern from a Layer III pyramidal neuron

GABA_A receptor α4 subunit knockout mice ^{*}Manoj K. Jaiswal¹, Sotirios T. Keros², and Peter A. Goldstein¹

Conclusions

- cortical pyramidal cells.
- α_1 or α_5 subunits.
- A compensatory increase in α_5 GABA_A-R subunit 2011).

 \clubsuit Under baseline conditions, the GABA_A-R α 4 subunit is responsible for mediating the tonic current in superficial

 \clubsuit Neurons lacking the GABA_A α 4 subunit retain the capacity to generate a tonic current in the presence of elevated [GABA], possibly due to activation of GABA_A-Rs containing

expression in GABA $\alpha 4^{-/-}$ mice does not appear likely, consistent with published results (Suryanarayanan et al.

Extrasynaptic GABA_A-Rs are involved in a variety of physiological and pathological states including sleep, learning and memory, and seizures.

Determining the contribution of the various GABA_A subunits underlying the tonic current in specific neuronal populations will facilitate the development of more targeted therapeutic modalities in relevant pathological conditions.

Significance